Design and implementation of self-adaptable parallel algorithms for scientific computing on highly heterogeneous HPC platforms
نویسندگان
چکیده
Traditional heterogeneous parallel algorithms, designed for heterogeneous clusters of workstations, are based on the assumption that the absolute speed of the processors does not depend on the size of the computational task. This assumption proved inaccurate for modern and perspective highly heterogeneous HPC platforms. New class of algorithms based on the functional performance model (FPM), representing the speed of the processor by a function of problem size, has been recently proposed. These algorithms cannot be however employed in self-adaptable applications because of very high cost of construction of the functional performance model. The paper presents a new class of parallel algorithms for highly heterogeneous HPC platforms. Like traditional FPM-based algorithms, these algorithms assume that the speed of the processors is characterized by speed functions rather than speed constants. Unlike the traditional algorithms, they do not assume the speed functions to be given. Instead, they estimate the speed functions of the processors for different problem sizes during their execution. These algorithms do not construct the full speed function for each processor but rather build and use their partial estimates sufficient for optimal distribution of computations with a given accuracy. The low execution cost of distribution of computations between heterogeneous processors in these algorithms make them suitable for employment in self-adaptable applications. Experiments with parallel matrix multiplication applications based on this approach are performed on local and global heterogeneous computational clusters. The results show that the execution time of optimal matrix distribution between processors is significantly less, by orders of magnitude, than the total execution time of the optimized application.
منابع مشابه
Parallel computing using MPI and OpenMP on self-configured platform, UMZHPC.
Parallel computing is a topic of interest for a broad scientific community since it facilitates many time-consuming algorithms in different application domains.In this paper, we introduce a novel platform for parallel computing by using MPI and OpenMP programming languages based on set of networked PCs. UMZHPC is a free Linux-based parallel computing infrastructure that has been developed to cr...
متن کاملDynamic Load Balancing of Parallel Computational Iterative Routines on Highly Heterogeneous HPC Platforms
Traditional load balancing algorithms for data-intensive iterative routines can successfully load balance relatively small problems. We demonstrate that they may fail on highly heterogeneous HPC platforms. Traditional algorithms use models of processors’ performance which are too simplistic to reflect the many aspects of heterogeneity. This paper presents a new class of dynamic load balancing a...
متن کاملDesign and Optimization of Scientific Applications for Highly Heterogeneous and Hierarchical Hpc Platforms Using Functional Computation Performance Models
HPC platforms are getting increasingly heterogeneous and hierarchical. The main source of heterogeneity in many individual computing nodes is due to the utilization of specialized accelerators such as GPUs alongside general purpose CPUs. Heterogeneous many-core processors will be another source of intra-node heterogeneity in the near future. As modern HPC clusters become more heterogeneous, due...
متن کاملFuPerMod: A Framework for Optimal Data Partitioning for Parallel Scientific Applications on Dedicated Heterogeneous HPC Platforms
Optimisation of data-parallel scientific applications for modern HPC platforms is challenging in terms of efficient use of heterogeneous hardware and software. It requires partitioning the computations in proportion to the speeds of computing devices. Implementation of data partitioning algorithms based on computation performance models is not trivial. It requires accurate and efficient benchma...
متن کاملOptimization of Data-Parallel Scientific Applications on Highly Heterogeneous Modern HPC Platforms
Over the past decade, the design of microprocessors has been shifting to a new model where the microprocessor has multiple homogeneous processing units, aka cores, as a result of heat dissipation and energy consumption issues. Meanwhile, the demand for heterogeneity increases in computing systems due to the need for high performance computing in recent years. The current trend in gaining high c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1109.3074 شماره
صفحات -
تاریخ انتشار 2010